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Abstract
Following the recent release of AI assistants, such as OpenAI’s Chat-

GPT and GitHub Copilot, the software industry quickly utilized

these tools for software development tasks, e.g., generating code or

consulting AI for advice. While recent research has demonstrated

that AI-generated code can contain security issues, how software

professionals balance AI assistant usage and security remains un-

clear. This paper investigates how software professionals use AI as-

sistants in secure software development, what security implications

and considerations arise, and what impact they foresee on security
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in software development. We conducted 27 semi-structured inter-

views with software professionals, including software engineers,

team leads, and security testers. We also reviewed 190 relevant

Reddit posts and comments to gain insights into the current dis-

course surrounding AI assistants for software development. Our

analysis of the interviews and Reddit posts finds that, despite many

security and quality concerns, participants widely use AI assistants

for security-critical tasks, e.g., code generation, threat modeling,

and vulnerability detection. Participants’ overall mistrust leads to

checking AI suggestions in similar ways to human code. However,

they expect improvements and, therefore, a heavier use of AI for

security tasks in the future. We conclude with recommendations

for software professionals to critically check AI suggestions, for AI

creators to improve suggestion security and capabilities for ethical

security tasks, and for academic researchers to consider general-

purpose AI in software development.
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1 Introduction
Large language models (LLMs) are among the most notable ad-

vances in artificial intelligence (AI). LLMs such asOpenAI’s GPT [57]

or Codex [56] can generate text and code for given prompts. In No-

vember 2022, OpenAI introduced ChatGPT [57], a general-purpose

AI assistant based on the GPT LLMs that can also generate code.

Other tools explicitly target developers, such as GitHub Copilot [32],
which was introduced already in 2021 [31]. Copilot is integrated

into IDEs to perform automatic completion and generation of code.

We refer to these LLM-powered tools as AI assistants.
Modern AI assistants are very powerful and can help humans

with a few keystrokes, e.g., Copilot was estimated to improve pro-

ductivity by 30% [23, 25]. This and the wide availability can also

explain the quick adoption by the software industry, organizations,

and individual software professionals. According to the 2023 Stack

Overflow (SO) Developer Survey, about 70% of professional de-

velopers are using or are planning to use AI tools within their

development processes and highlight improved productivity and

efficiency as main benefits [69]. Moreover, the survey found devel-

opers already use AI assistants in their development workflow, e.g.,

for writing, testing, debugging, reviewing, or documenting code.

Besides the above benefits, the security performance of LLMs

is overall mixed [22, 73]. While research has identified that LLMs

can support security tasks—albeit with various limitations and

challenges—such as reverse engineering, CTFs, or other offensive

tasks [33, 53, 60, 66, 67, 70], AI assistants are also susceptible to

generating insecure code [36]. For example, one experiment found

Copilot produced vulnerable code in 40% of security-critical pro-

gramming tasks [59], and another showed using AI assistants led

participants to produce significantly less secure code [61]. This is

confirmed by other reports [49, 64, 68] and known issues, such as AI

package hallucinations [14, 46] or amplifying insecure codebases by

replicating their vulnerabilities [21]. While the studies mentioned

above show that using AI assistants can significantly affect security,

they do not explore users’ considerations and how they balance

security and AI assistant usage. We argue that those play a crucial

role and aim to close this gap with this study.

We further argue that AI assistants can be considered a new

source of advice for software professionals. Similar to other advice

sources, this might be problematic given that software professionals

are known to draw heavily on (online) advice [1–3] and that this

advice can impact security negatively [13, 28], e.g., when searching

for and discussing security issues and solutions [54, 74] or when

copying insecure code snippets from SO [1, 27]. It is unclear how

software professionals work with and scrutinize AI suggestions

compared to other less-than-perfect sources of advice like SO. These

concerns are also apparent in the industry. Google, among other

tech giants like Apple [71] and Samsung [34], banned AI assistants,

including Google’s own Bard, from internal usage due to security

and quality issues of generated code and privacy concerns [20].

As AI assistant suggestions are a new class of advice for software

professionals, it is crucial to understand their impact on software

security and how they address these security considerations.

To address these gaps, we conducted a qualitative interview study

with 27 software professionals, including software engineers, team

leads, and penetration testers, on their experiences with and usage

of AI assistants for software development in the context of security.

Additionally, we reviewed the Reddit discussions regarding the use

of AI assistants for software development and its potential security

impacts. We qualitatively analyzed 68 threads and 122 comments

relevant to using AI in software development and security practices.

The following research questions direct our study:

RQ1: How are AI assistants used in software development in the
context of security? Through interviews with software pro-

fessionals and reviewing Reddit posts, we investigate how

and for which tasks software professionals use AI assistants.

RQ2: What security concerns and considerations are raised with AI
assistants’ usage in software development? Our interviews

provide insights into the security implications of using AI

assistants. We also investigate the role of policy enforcement,

code reviewing, and the liabilities associated with insecure

code generation.

RQ3: What do developers expect AI assistants’ future impact on
secure software development will be? Given AI assistants’

rapid development and adoption, we asked the participants

to speculate about future development and security impact.

In this paper, we make the following contributions:

• Qualitative Insights on Security of AI Assistants in Software Devel-
opment: We are the first to present qualitative insights on how

software professionals use AI assistants and consider security

in that context. Participants generally mistrust suggestions’ se-

curity due to overall quality concerns. Nonetheless, they widely

consult AI assistants on security-critical tasks (e.g., threat model-

ing, generating code, vulnerability detection), replacing advice

sources like Google and SO, while critically reviewing sugges-

tions. Overall, participants would adopt AI assistants for security

tasks if their quality improves. The complementing Reddit in-

sights confirm those from the interviews.

• Recommendations: We conclude with recommendations for dif-

ferent AI assistant stakeholders in the context of software devel-

opment and security. In summary, software professionals should

remain skeptical and carefully check all AI suggestions, e.g.,

through peer reviewing and software testing. We highlight the

need to improve AI suggestion security and recommend AI as-

sistant creators to ensure decent security and reasonable ethical

safeguards for security tasks. Researchers should focus not only

on AI code assistants, but also general-purpose ones and their

use in software development.

• Artifacts: For transparency, we provide artifacts for both the

interviews and the Reddit analysis (see Availability Section).

https://doi.org/10.1145/3658644.3690283
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2 Related Work
We discuss related work in two key areas: (i) security aspects of

AI assistants and (ii) AI assistants as a novel advisor for software

professionals.

2.1 Security of AI Suggestions
Several studies raise security concerns when using AI assistants,

such as for code generation. Pearce et al. assessed bugs introduced

by GitHub Copilot due to the unvetted code datasets on which

the LLM was trained and found 40% of generated code to be vul-

nerable [59]. The study concluded by advising developers to “stay

awake” while using the tool as a copilot. A 2023 replication study

found that the proportion of insecure code suggestions decreased

from 36.54% but remains high at 27.25% [49]. Despite these po-

tentially insecure code suggestions, Sandoval et al. found in an

experiment on writing C code that using AI assistant code sugges-

tions causes only 10% more security bugs compared to the control

group (not using AI assistants) [64]. However, Perry et al. found

for five programming tasks in three languages (Python, JavaScript,

C) that participants using AI assistants produce significantly less

secure code while believing to have written more secure code [61].

So-called hallucinations underline that current AI assistants can-
not be blindly trusted. For example, security researcher Lanyado

found that AI assistants hallucinate software packages that—when

registered—are installed by developers and could be used to dis-

tribute malicious code [14, 46]. Moreover, in an industry survey by

Snyk among software professionals, 56.4% reported that insecure

suggestions by AI assistants are common [68].

Given all those security issues in existingAI assistants, the recom-

mendation for developers to “stay awake” is highly important [59].

However, the existing studies only show the current shortcom-

ings, and none explore the considerations of software professionals

when using AI assistants. We argue that human factors need to

be understood and considered so that using AI assistants does not

weaken security. Therefore, we conduct interviews with 27 indus-

try practitioners, and qualitatively complement prior experimental

results [59, 61]. While prior work mainly investigated AI code assis-

tants [49, 59, 61, 64], we also cover general-purpose AI assistants.

2.2 Security Advice
We argue that AI assistants are a new source of advice for software

professionals, including security advice. Over the last decade, re-

search examining software developers has found that developers

draw heavily on (online) advice [1–3, 13, 27–29, 54, 74]. Researchers

found this advice to influence the security of software [1–3].

Software developers discuss security topics on SO [74]—despite

the site containing an almost balanced mix of secure and insecure

answers [13]. For example, Acar et al. found that only 17% of SO

posts contain secure code snippets and that insecure snippets are

copied and deployed in software [1]. Fischer et al. found that inse-

cure code from SO is widely prevalent in Android apps [27]. Besides

SO, Fischer et al. also identified insecure suggestions among top

Google search results and demonstrated how re-ranking search

results can positively change SO’s security impact [28]. Particularly

interesting in the context of AI assistants, Fischer et al. demon-

strated how deep-learning-based nudging could help developers

using SO to write secure code [29].

Beyond the security of code, there are other issues with more

general security advice that developers can find online. In a CCS

2022 keynote, Mazurek diagnoses an overall security advice “dis-

aster” that also affects software professionals [50]. For example,

Klemmer et al. found usable security advice on the web to be debat-

able, outdated, or contradicting and might therefore cause insecure

implementations [45]. Moreover, researchers found issues in both

security advice adoption [11, 40] and consensus [63], and struggles

with advice prioritization among software professionals [62].

Considering AI assistants as a new advice source that is consulted

and directed by humans (e.g., with natural language prompts), the

question arises as to whether and how these known challenges of

online advice also translate to AI assistants and how this impacts

security. Our study seeks to answer this question by interview-

ing software professionals to explore human factors like trust and

concerns when using AI assistants for software development. We

argue that understanding such factors is critical as they affect usage

behavior and scrutiny when using AI assistants.

3 Methodology
This section describes how we designed our study, including our

interview recruitment process and line of questioning, our Reddit

review process, and our data analysis.

3.1 Interview Design & Piloting
Typical for early exploratory work like ours, we conducted semi-

structured interviews, as these enable exploration of key themes

but also discussion-led in-depth exploration of novel emerging

topics, e.g., by asking follow-up questions and letting participants

elaborate their thoughts freely. We designed an initial interview

guide based on our RQs. Multiple researchers discussed and revised

the interview guide in various iterations to cover all relevant aspects,

e.g., adding sub-questions, and enhancing question clarity. The

authors had experiencewith SE, security, and human factors. Finally,

we validated the interview guide in three pilot interviews with

software professionals. We included those for analysis, as we did

not make any significant changes.

3.2 Interview Structure
Below, we outline the structure and content of our interviews.

The semi-structured interview followed an interview guide split

into three sections based on our research questions. The interview

guide is available online (cf. Availability section). We conducted the

27 interviews between July 2023 and March 2024 online via Zoom,

lasting an average of 55 minutes (excluding intro and outro). Each

interview was conducted by one of three interviewing authors.

Introduction. At the beginning of each interview, we introduced

participants to the interview topic and procedure and obtained

consent before recording for later transcription. We asked them

to introduce themselves to get some background information and

warm up the participants.
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Section 1: Usage of AI Assistants (RQ1). First, we asked about AI

assistants’ use, including the tools the participant had used, their

motivation for using them, the tasks for which they used code-

AI assistants, and any policies about using AI assistants in their

organizations. Moreover, we queried participants about their AI

assistant workflow, i.e., how they use and approach AI assistants.

Section 2: Security Implications of AI Assistants (RQ2). Next, we
investigated the participants’ understanding, experience, and opin-

ions on the security implications of usingAI assistants.We prompted

participants to discuss security advantages or disadvantages when

using AI assistants for software development. Additionally, we

asked about challenges associated with authorship and liabilities,

e.g., when an AI assistant would introduce a vulnerability.

Section 3: Future and Outlook (RQ3). In the final third section,

we asked participants to elaborate on their outlook on the future

of AI assistants and their impact on software development and

security. We asked how AI assistants have impacted their develop-

ment process and how they expect this to change. We also queried

participants about human and AI capabilities by asking whether

developers or AI produces more secure code. Last, we asked about

any needs, desired changes, and wishes for future AI assistants and

how they could help with security in software development.

Outro & Debriefing. Once the interview was complete, we asked

participants if they had any further comments to make and stopped

the recording afterward. We also asked them to share the study

with anyone they know who might be interested. After the inter-

view, we sent participants the link to a short, anonymous online

demographics questionnaire.

3.3 Recruitment & Inclusion Criteria
To recruit participants, we used our research team’s industry con-

nections, hired software professionals on Upwork, and advertised

our study at a university, following the recommendations of prior

work on developer recruitment best practices [43]. Through Up-

work, we advertised to freelancers with experience writing secure

code and using AI assistants.

People who showed interest in the study were directed to a

screening questionnaire
1
that began with the developer screening

questions by Danilova et al. [18, 19] and then continued to a series

of questions about their current role and experience with software

development and AI assistants. Participants had to (i) pass two of

three random screening questions by Danilova et al., (ii) be either a

developer, team lead, or security expert, and (iii) at least sometimes

deal with software security and use AI assistants. If a participant did

not fulfill these criteria, we did not consider them for the interview.

Following the screening, we directed the participants who passed to

a consent form explaining the study, outlining the interview’s struc-

ture, and stating how participant responses would be processed.

After acknowledging the consent form, the participant was directed

to a calendar to select a one-hour slot for an online interview based

on their availability and the interviewers’ schedule. We provide

both the recruitment materials and the screening questionnaire

online (see Availability Section).

1
Upworkers were screened directly on Upwork and based on their Upwork profiles.

We did not screen participants from our professional networks.

Each participant was offered compensation in the form of an

Amazon voucher worth $60, or a direct payment via PayPal. Free-

lancers hired via Upwork were paid $60 on the platform.

3.4 Demographics
We recruited a diverse sample of 27 participants for the interviews:

12 from Upwork, 12 from our professional networks, and three

university students also working in industry. Of those, six iden-

tified as tech or team lead, 14 as software developers, and four

as machine learning engineers. Eight participants were security

experts working as security engineers, security testers, or pene-

tration testers. Occasionally, participants held multiple roles. On

average, participants had extensive software industry experience

of 14.6 years (md: 12, min: 2, max: 45). Participants often have to

deal with security: eleven indicated their responsibilities include

security all the time, while the rest indicated they consider security

at least sometimes. Accordingly, participants overall achieved on

average a secure software development self-efficacy score (SSD-

SES) [72] of 55.4 points (md: 60, min: 20, max: 65). Compared to

Kaur et al.’s SSD-SES results for developer samples from Upwork

(mean: 24.1) and students (mean: 21.9) [43], our participants show

high confidence in their secure development skills. The sample

was roughly divided into full- (11) or part-time (5) employees and

self-employed freelancers (17) (multiple answers were possible).

One person was looking for work, and three were students. Most

participants resided in the US, followed by India, Pakistan, the UK,

Brazil, the UAE, Montenegro, Poland, Turkey, and Ukraine. The

majority are highly educated: nine hold a Bachelor’s degree, eight

a Master’s, and two a doctorate. One participant currently attends

graduate school; the remaining hold a college degree. A detailed

overview of all participants is given in Table 1. We observed no

differences in participants’ answers due to geographic diversity, as

participants widely use AI assistants regardless of country [69].

3.5 Interview Analysis
We transcribed the audio recordings using an internal university

service and Amberscript [5]. Amberscript initially creates an AI-

based transcript before it is corrected by a human transcriber. Ad-

ditionally, we reviewed the transcripts for any transcription errors

and corrected them, e.g., field-specific terms or acronyms. Upon

finalizing a transcript, we destroyed the interview’s recording.

To identify common themes in the software professionals’ expe-

riences using AI assistants in software development, we adopted

the six-step thematic analysis approach [7, 15] by Braun and Clarke.

After familiarizing themselves with the material by conducting

the interview and/or reading the transcripts (step 1), three authors

analyzed one transcript to develop an initial codebook inductively

(step 2). After the first transcript, the coders analyzed the transcripts

individually so that two coders independently examined each in-

terview. After completing the independent transcript coding, both

coders merged and reviewed the coding. During these sessions, we

discussed new codes and disagreements to arrive at a consensus

by the end of the meeting. We also began categorizing codes into

themes based on their commonalities (step 3). In this process, the

codebook and higher-level themes developed as we refined them in

each iteration with the insights from the newly coded interviews
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(step 4). The codebook and themes were reviewed multiple times

during the analysis until we reached saturation and a clear defini-

tion for each code and theme (step 5). We report the themes, their

codes, and example quotes in Section 4 (step 6). On average, we

assigned 84 codes per interview transcript. We provide the final

codebook in the extended version.

We do not report inter-rater reliability (IRR) [51]; Braun and

Clarke advocate not to use IRR for their reflexive thematic analysis

approach [8, 9]. Other researchers support this [12].

3.6 Reddit Discourse Review
Next, we investigated online discourse on Reddit about using gen-

erative AI assistants and their effect on code security. We chose

to complement the interviews with a review of online discussions

to assess whether sentiments described in our relatively small par-

ticipant sample were reflected in broader discussions on this key

forum. While this did not provide many additional insights, it sup-

plemented and reinforced the findings from the interviews.

3.6.1 Data Collection. In an initial exploratory gray literature re-

view based on Google searches, we found Reddit to be the main

place to discuss AI assistant usage including developer perceptions

of AI-generated code. This is also supported by other studies fo-

cusing on Reddit as the platform includes in-depth informal SE

discussions [39, 41, 47]. Similar platforms, like SO, only included

examples of AI use for coding or debugging support. Therefore, we

decided to focus on Reddit.

We searched r/compsci, r/programming, r/learnprogramming,

and r/Technology, the most popular computer science and pro-

gramming subreddits (i.e., at least one million members). We chose

these subreddits due to their large membership and active discus-

sions about trending development topics like generative AI. We also

searched r/ChatGPTCoding, which focuses explicitly on AI-assisted

development and potentially yields more specific discussions. For

each subreddit, we repeated our previous Google searches, and

additionally new terms based on our interview questions, and com-

mon terms identified through our initial gray literature search (see

extended version). We reviewed each returned post whether it dis-

cussed the usage of AI assistants for coding and, for relevant posts,

we identified themes in AI assistant usage (Section 3.6.2). For each

relevant post, we collected the top ten comments, which we also re-

viewed for relevance. Next, we calculated term frequency amongst

relevant posts and comments. We created additional queries from

frequent terms in relevant discussions. We then performed a sec-

ond round of searches and repeated our relevance assessment of

all returned posts and comments. We used various search terms, to

prevent missing security discussions not containing “security.” In

total, our searches yielded 397 posts and 366 comments. Of these,

68 posts and 122 comments were relevant.

3.6.2 Analysis. To determine the collected Reddit posts’ and com-

ments’ relevance and extract themes, we followed an iterative, open

coding approach [17]. First, three authors analyzed 50 documents

(from the initial gray literature review) and posts to develop the

codebook. Then, two authors independently coded posts and com-

ments in groups of 50 using the initial codebook and allowing addi-

tional codes to emerge. After each round, the coders met, compared

codes, resolved disagreements, updated the codebook as necessary,

and re-coded any previously coded documents. We calculated Krip-

pendorff’s alpha (𝛼) to measure IRR [37]. This process was repeated

for four rounds (i.e., 200 documents), until acceptable reliability was

reached (𝛼 = 0.91) [37]. The remaining documents were divided

evenly between two researchers and coded by a single researcher.

3.7 Limitations and Threats to Validity
3.7.1 Interviews. As usual for interview studies, our work has

typical limitations that can affect results, such as self-reporting,

social desirability, and participation biases. For example, partic-

ipants might not have shared any forbidden AI assistant usage

or overreported the extent to which they validate AI-generated

code. While conducting the interviews in English might reduce the

number of potential participants and could skew the results, we

think this is an acceptable trade-off as English can be considered

the primary language in software development. We note that the

interviews focused on professional software development contexts

within companies and larger organizations and might not apply to

other scenarios, e.g., hobbyists or open-source developers. In line

with the overall widespread usage of AI assistants among profes-

sionals [69], our sample includes only few participants who do not

use AI assistants professionally (e.g., due to company policy), but

for private projects. Given the unequal distribution, we possibly

gained more insights from AI users than non-users.

3.7.2 Reddit Analysis. This review has limitations that are common

to similar artifact reviews. First, our sample is specific to Reddit.

This population is likely more active than other developers and may

not represent the whole community. However, this higher level of

engagement offers an upper bound, as these users are also more

likely to consider themselves passionate about new technologies

like AI assistants [30]. Additionally, Redditors’ comments are lim-

ited in scope and may not provide full context to describe their

thoughts and motivations, as this was not the goal of their original

post. However, this is complemented by in-depth interview insights.

Finally, our searches are a snapshot of the beginning of widespread

AI assistant usage and should be considered in context; software

professionals’ relationships with AI assistants will likely change.

3.8 Ethics
Ethical approval for this study was granted by the ethical and insti-

tutional review boards (IRB/ERB) of our institutions. The research

plan and study procedure adhere to (i) the ethical guidance of the

Menlo Report [44] and corresponding ACM policies [4], and (ii) the

EU General Data Protection Regulation (GDPR). We stored data

with personally identifiable information (PII) in a secure, self-hosted

storage. For transcription, we used internal university and GDPR-

compliant services. Besides informing themselves and acknowl-

edging the consent form before the interview, we also introduced

participants to our data handling practices, clarified any open ques-

tions, and let them know their participation was entirely voluntary.

They could skip questions or leave the interview at any time.

4 Results
Below, we detail the results from our qualitative analysis and com-

plement it with additional insights from the Reddit analysis, where
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Figure 1: Qualifiers and their respective percentages as used
to report our qualitative results. Graphic fromAmft et al. [6].

appropriate. For our qualitative interview insights, we do not report

exact numbers but rough qualifiers (see Figure 1). Exact numbers

on individual codes’ occurrence can be found in our codebook

(extended version). For the Reddit analysis, we report descriptive

statistics, as the sample was sufficiently large and as we achieved

an appropriate IRR [51] (cf. Section 3.6.2).

4.1 AI Assistant Overview
To set the general context for the following subsections, we provide

an overview of participants’ AI assistants.

4.1.1 AI Assistants. We found participants widely use AI assistants

in their professional work. Almost all reported using some AI as-

sistant and doing so very often, most even daily, for various tasks

(cf. Section 4.2.1). Participants mainly use ChatGPT and GitHub

Copilot, which aligns with the results of SO’s 2023 developer sur-

vey [69]. Participants also reported using other general-purpose

chatbots by Google (Bard/Gemini) and Microsoft (Bing Chat), but

more rarely. A few participants mentioned other models for coding,

such as UniXcoder, Amazon CodeWhisperer, and Llama. However,

they were used less often for various reasons, including secondary

use of Llama when dealing with sensitive information or propri-

etary code that should not be shared with ChatGPT or when the

primary AI assistant does not yield the anticipated results. Other

participants tried assistants (e.g., Amazon CodeWhisperer) for a

while, but then abandoned them in favor of ChatGPT or Copilot.

An overview of participants’ AI assistants is given in Table 1.

4.1.2 Experience with AI Assistants. All participants reported hav-

ing used AI assistants previously. Most participants started using AI

assistants after ChatGPT emerged in late 2022. Participants became

aware of AI assistants through the widespread news and social

media coverage around LLMs; peers, friends, and colleagues using

AI assistants; or sometimes, via clients requesting AI features.

4.1.3 Motivations for Using AI Assistants. Participants reported
several motivations for using AI assistants. While some reported

security-related motivations, these were rare. Some participants

mentioned that AI assistants could support them as a security expert

in their work:

“For the security point, there are a lot of checks that maybe, as a devel-
oper, I couldn’t be aware of. Security is exactly one of those points that
are not for humans because I believe a lot in machine solutions.” — P1

Those participants anticipate AI assistants conducting comprehen-

sive security checks or advising them with more security expertise

than they have themselves.

However, most participants were motivated by the increased

productivity and time savings when using AI assistants. One par-

ticipant explained this by saying: “It can absolutely support us, it
can make us more efficient at our jobs, and [. . .] if I become more

efficient, I need less headcount to do the same amount of work.” (P17).
Along those lines, a few participants reported that using AI assis-

tants can save money—for security, P4 stated that AI assistants

save money compared to expensive security scanners. Given the

productivity improvements, some participants used AI assistants

to stay competitive, learn new or enhance their skills in software

development. About half also mentioned a general curiosity in AI

and new technology. Participants also reported certain tasks (dis-

cussed in Section 4.2.1) as use-cases motivating their AI assistant

use, e.g., generating code or retrieving information.

4.2 Usage of AI Assistants
We asked participants how they used AI assistants for software

engineering and security (RQ1). Below, we report the tasks they

perform with AI assistants, participants’ associated concerns, how

their professional context constrains usage, and how they validate

AI-generated code.

4.2.1 Tasks. Similar to the motivations above, we find—while some

participants use AI assistants for security-specific tasks in software

development (e.g., threat modeling, identifying vulnerabilities)—

participants used AI assistants for many tasks throughout the soft-

ware development life cycle (SDLC), e.g., generating code, writing

documentation or requirements. Although the latter are not pri-

marily security-focused, they have security implications.

Security Tasks: Many participants reported using AI assistants

for security tasks. Identifying vulnerabilities and fixing security

bugs in code were mentioned the most by some participants: “If you
just grab some pieces of code that are exploitable and just paste them
in ChatGPT [. . .] Probably the AI is going to find out some changes
for you to make the code more secure.” (P15). Some participants used

AI assistants earlier in the SDLC. P4 mentioned using ChatGPT

for threat modeling: “What we are doing is using all this prompt
engineering and giving as much information as possible to the tool
and help us in defining the threat models rather than doing manual
work.” (P4). While P4 mentioned AI assistants are not perfect, they

at least provide a solid starting point for manual refinement, and

sometimes, they would have forgotten the AI-suggested attack

vectors otherwise. P15 also mentioned using AI assistants to create

an exploit, and P12 mentioned AI assistants helped them explain

results from static analysis tools. We found our software engineers

used AI assistants slightly more for security tasks, like checking

for vulnerabilities, than those primarily focused on security, e.g.,

security testers. One explanation is that participants with a strong

security background assume AI performs worse on security tasks.

Notably, only two Reddit posts specifically targeted security

and no comments. While rarely discussing security explicitly, com-

menters pointed out that AI-generated code is often of low quality

and should not be relied on (P=3, C=24)
2
, which could include secu-

rity issues. One commenter explained “It [AI] will lead to tech debt
and shabbily maintained and written code.” This AI skepticism was

the most common response to posts indicating a use or interest in

using AI assistants for code generation. On average, posts about

code generation received 0.62 comments indicating AI-generated

code should be thoroughly scrutinized.

2C denotes the number of comments about a topic, P the number of posts.
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Table 1: Overview of the 27 interviews, participants, and AI assistants they use.
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P01 00:46:54 52 Network Italy >25 SW Eng.

P02 00:50:34 69 Network France 0–5 SW Sec. Eng.

P03 00:49:30 69 Network Viet Nam 11–15 Director

P04 00:43:45 97 Upwork India 16–20 Director

P05 01:04:12 107 Upwork UK 6–10 SW Eng.

P06 00:39:37 75 Student USA 0–5 SW Eng.

P07 00:53:18 97 Student India 6–10 SW Eng.

P08 00:54:44 81 Network UK 11–15 Sec. Expert

P09 00:51:34 103 Student USA 6–10 SW Eng.

P10 00:57:31 58 Network Italy 6–10 SW Eng.

P11 00:58:53 68 Network USA >25 Sec. Expert

P12 00:58:18 127 Network Canada 6–10 Tech Lead

P13 00:43:06 67 Upwork India 0–5 Pen. Tester

P14 01:00:56 80 Upwork USA 0–5 SW Eng.

P15 00:45:36 76 Network Brazil 21–25 SW Eng.

P16 01:06:12 129 Network UK 6–10 SW Eng.

P17 00:45:15 104 Network UK 16–20 Director

P18 01:10:28 46 Network USA 21–25 SW Eng.

P19 01:02:45 129 Upwork India 21–25 Tech Lead

P20 01:11:30 74 Network USA 11–15 SW Eng.

P21 01:11:02 83 Upwork UAE >25 Tech Lead

P22 01:00:54 117 Upwork USA 16–20 Tech Lead

P23 00:45:57 58 Upwork Montenegro 0–5 ML Eng.

P24 01:07:18 85 Upwork Pakistan 6–10 Sec. Expert

P25 00:50:05 77 Upwork Poland 11–15 Sec. Expert

P26 01:12:57 102 Upwork Turkey 16–20 Pen. Tester

P27 00:25:53 51 Upwork Ukraine 0–5 SW Sec. Eng.

Sum 2,281 27 13 9 6 5 4 2 2 1 1 1 1 1 1 1 1 1

Used the respective AI assistant. Did not use it.
1
Number of codes assigned to the interview transcript.

2
Software industry experience in years.

Coding-Related Tasks:Most often, almost all participants re-

ported using AI assistants for coding-related tasks. Almost all par-

ticipants used AI assistants to generate code, as in this example:

“In most cases, I found the code written by ChatGPT to be a very good
starting point. It’s never perfect, but a very good starting point that we
just need to add a few if-else statements to catch some edge cases or to
fill in our credentials for certain databases.” — P12

This sentiment was common on Reddit, as 33 posts described using

AI assistants to generate code or wanting to learn how to use

AI assistants. Similarly, this was the second-most common topic

of AI assistant-related Reddit comments (C=30). The only more

common comment topic was whether AI assistants would replace

developers altogether (P=9, C=48). Regarding code generation, a

few participants stated that they used AI assistants to translate code

into other programming languages. At the same time, participants

said they might not understand code for unfamiliar programming

languages: “I have close to no experience with Rust and I guess I can
ask ChatGPT to produce Rust code for me, even though I would not be
able to actually understand whether it’s correct or not.” (P2).

Some participants reported using ChatGPT for debugging code,

fixing bugs, or explaining code: “The thing I love about things like
ChatGPT is it doesn’t just give you the answer, it explains why, es-
pecially if you’re asking it for code it will tell you: [. . .] here’s what
it does.” (P17). Minor other use cases were related to code quality,

such as refactoring, optimizing, and reviewing code. These uses

were reflected in the Reddit discourse, with several posters and

commenters describing using or wanting to use AI assistants for

debugging (P=7, C=0) or explanations (P=7, C=4). Few discussed

refactoring (P=2, C=0) and optimizing (P=4, C=10). One Redditor

preferred using ChatGPT to do more straightforward coding tasks,

saying they “[Use] ChatGPT for automating the boring stuff like code
refactoring, unit tests, and code documentation” (redditor).

Information & Advice Source: The majority of participants

reported consulting AI assistants as general sources for researching

information, asking questions, and obtaining advice. About half

of the participants said they use AI assistants as replacements for

search engines (like Google) and online communities (like SO). Two

participants fittingly describe it: “Wherever I would formerly use
StackOverflow, I now use OpenAI [ChatGPT].” (P17) and “Previously
[. . .] you would say, ‘Have you Googled it?’ Nowadays we’ll say, ‘Did
you ask ChatGPT?’” (P12).

Documentation & Requirement Analysis: Lastly, we found
the majority of participants used AI assistants to perform tasks sup-

porting application design and development in the SDLC—beyond

coding. This includes requirement analysis, creating documentation

and reports, and writing Jira stories (e.g., for bugs/issues). A few

participants who conducted security tests said they write their se-

curity reports with AI assistance. Facing those tasks likely explains

the higher popularity of ChatGPT compared to GitHub Copilot.

Tasks AI Assistants are not Used for: Some participants ex-

plicitly said not to use AI assistants for the above-mentioned tasks.

For example, some participants stated not to use it for discovering

vulnerabilities: “Vulnerability wise, I don’t think it does that good,
just to identify that source code wise. [. . .] Other premium scanners or
some things would be doing a better job, I guess.” (P13). The concerns
about AI assistant performance and capabilities were also prevalent
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among other participants and prevented them from AI-assisted bug

fixing, code reviews, or threat modeling: “I even tried to use for the
threat modeling, but it was so bad that it was [. . .] just a nightmare. I
just [. . .][did] it from scratch by myself.” (P25).

Security Relevance of Non-Security Tasks: Considering code
generation, the primary task is not security, but using insecure AI-

suggested code might have severe security consequences. However,

some participants explicitly mentioned that generated code has

almost no security impact, as they would only create smaller snip-

pets or not use them in production. P15 explained: “I don’t generate
one page of code. It’s just a few lines of code [. . .]. Those are small
functions; they don’t have security concerns at all.” (P15). Participants
predominantly expressed that security issues would be easier to

spot when generating smaller code chunks, which is their typical

use case. We cannot assess this hypothesis without future research—

the participants’ experience might be correct. Still, small snippets

might be dangerous, e.g., when AI hallucinates packages [14, 46].

Besides code generation, searching and looking up information

could be security-relevant; if the AI output is incorrect, software

professionals might make decisions that undermine security.

4.2.2 Organizational Context & Privacy Constrain AI Assistant Us-
age. While most participants use AI assistants daily for various

tasks, they reported that the professional context in their orga-

nization can constrain how AI assistants are used. When asked

about security, participants did not mention constraints due to the

security of the software they create but mainly privacy, legal, and

indirect security concerns when using third-party AI assistants.

The primary concern among most participants was leaking sen-

sitive data when using third-party AI assistants—either that the AI

provider is breached or their inputs are used for training LLMs and

might be reproduced by future models. A few participants stated

that they feared their code or internal knowledge might be leaked

and used by attackers, e.g., to find and exploit vulnerabilities in

their code. Due to these concerns, many participants reported using

AI assistants only in one direction: using the AI-generated code,

but never supplying their code to the model.

However, participants were mainly concerned about leaking

proprietary information and code, confidential company data, vi-

olating non-disclosure agreements, license agreements, or other

contracts, or leaking otherwise protected data or PII. Consequently,

participants police themselves on what they supply as inputs to AI

assistants. P09 describes this fittingly:

“I cannot simply copy code to a ChatGPT or other AI assistant because
they’re going to put it on a larger pool of data and supply it everywhere.
The security measures in our company or any company in general
wouldn’t permit us to do those things. We’ll have to break down the
problem statement and essentially ask only the context, as if asking
another person who is not in our company.” — P09

Due to leakage concerns, some organizations set AI usage policies

(Section 4.3.3) or desire self-hosting models or getting privacy guar-

antees (Section 4.4.3). While this sentiment was not common on

Reddit, one commenter, in response to a post about using AI assis-

tants, warned “[it] returns entire snippets of copyrighted code without
any attribution.” We expect the discrepancy between interviews

and Reddit comes from the focus on internal organization policies.

Participants reported other minor constraints that were largely

unrelated to security. This includes copyright infringement and

intellectual property violations when using AI assistants that re-

produce training data and high AI assistant costs, e.g., for subscrip-

tions or operation costs if self-hosting. For most, the costs were

outweighed by productivity improvements.

4.2.3 Quality Assurance of AI-Generated Code. Generally, partic-
ipants reported checking AI-generated outputs, especially code,

before using them. This is grounded in a general mistrust due

to correctness and reliability issues that participants experienced,

which they also translate to security (Section 4.3.1). One participant

said: “I just think there are vulnerabilities and there are things that it
doesn’t know. Currently, and at least for the next five years, I think all
code written by AI will need to be gone over by a professional.” (P14).
Overall, we found participants to commonly follow a three-step

process to check AI-generated code, as depicted in Figure 2:

(1) Manual Inspection: First, almost all participants said to

inspect the generated code and check for anomalies or issues: “I
don’t completely trust them, but I at least read over their code.” (P19).
While some participants mentioned specifically checking for se-

curity issues, the majority was more concerned about functional

correctness—one even said not to check security at all.

(2) Copy, Execute, and Fix Suggested Code: Next, many par-

ticipants reported copying and executing the suggested code to

check whether it works. If not, they fix it manually or with the AI

assistant’s help. However, a few participants indicated not adopting

the generated code but using it as a blueprint, re-implementing the

final code entirely on their own: “[I] reuse it without copying, but just
reading, understanding how it works, and doing it by myself.” (P27).

(3) Peer Review & Software Testing: Third, about half of the
participants reported that they complement their checks with peer

reviews before merging code. The respective reviewers varied de-

pending on the organizational structure and resources: Participants

reported other team members, team leads, quality assurance teams,

or dedicated security experts/teams. We suspect a higher preva-

lence of peer reviewing, as it is a common practice not specific to

AI-generated code that participants might not report. Some partici-

pants said they did not distinguish human and AI-generated code

and apply the same reviewing and testing procedures:

“This isn’t something that we introduced because of generative AI [. . .].
We’ve always had a full SDLC. [. . .] the same rules apply as every other
piece of code you write. Code that’s generated by the AI goes to the exact
same review process [. . .]” — P17

Similarly, many participants used various forms of software

testing to validate AI-generated code. This included classical forms

of software testing like unit tests, static analysis tools, and fuzzing.

Some participants asked the AI assistant who generated the code

to check it or cross-check it with another AI assistant.

Key Findings: Usage of AI Assistants (RQ1).
• AI assistants are used for various security tasks, such as threat model-

ing or vulnerability detection, and security-relevant tasks (e.g., code

generation) in the SDLC. Moreover, participants consult AI assistants

with general questions and for advice, replacing SO and Google.

• In the corporate context, the main concern is privacy—not security of

software created with its help—which constrains AI assistant usage.
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Figure 2: Our participants described three steps to inspect AI-generated code.

• While AI-generated code is often directly copied to codebases, it un-

dergoes quality assurance similar to human-written code, including

peer review and software testing.

4.3 Security Concerns & Considerations
Below, we cover participants’ security concerns and considerations

(RQ2). As participants largely showed mistrust in AI suggestions,

we report on reasons for their mistrust. Moreover, we report on AI

assistant usage policies in the participants’ corporate context.

4.3.1 Security Concerns and AI Assistant Challenges. Overall, par-
ticipants generally mistrusted AI assistants for security due to

several challenges they experienced.

Mistrust and Blind Trust: Most participants mistrusted AI as-

sistants and their generated suggestions, as they doubt the security

of its suggestions or more indirectly the correctness of suggestions:

“Right now, I will not be able to trust the code produced by ChatGPT in
security-sensitive scenarios [. . .] It’s mostly like I cannot really trust the
correctness of this code, I’m not sure I should trust the security properties
of it either.” — P02

Despite this general mistrust, many participants feared negative

security impacts as they expect some software professionals might

trust AI blindly, not questioning security: “I worry that people will
lean on or depend too much on the things generated by AI and forget
about the security.” (P03). Relatedly, some participants complained

that AI assistants are always confident, even if the suggestions are

wrong or insecure. Instead, participants desired AI assistants to

indicate their confidence, similar to how humans would express

uncertainty about a solution. Many participants also mentioned

that wrong AI suggestions are hard to recognize.

Poor AI Suggestion Quality: Participants expressed the above

mistrust concerning poor AI suggestion quality—for general sug-

gestions and AI-generated code. Most participants reported overall

quality issues, such as inaccurate, outdated results—due to older

datasets on which LLMs were trained—or hallucinations. A few

also expressed that quality degraded over time.

Almost all participants expressed quality problems when gener-

ating code with AI assistants. This mainly concerned the necessity

to review and rework code (Section 4.2.3) as the majority experi-

enced that code did not work as intended or were even concerned

that AI might otherwise introduce bugs: “I don’t think we’ve ever
taken anything directly from the AI [. . .] straight into code. Even after
all the checks, I think everything’s had to go through and be subtly
changed.” (P17). Especially for more complex problems and when

generating larger amounts of code, about half the participants re-

ported lower quality. A few participants found AI-generated code

challenging to refactor. This aligns with some participants who said

AI-generated code was hard to understand and fix.

These issues likely relate to the interaction challenges the par-

ticipants mentioned with AI assistants. For most participants, that

concerned prompting and prompt engineering, i.e., steering the

AI assistants to generate what the user desires. Many participants

reported needing to change their prompts in multiple iterations

until they were satisfied with the AI-generated answers. One par-

ticipant said: “You end up just having to both tweak the prompts and
then tweak the code [. . .] to actually fit your purpose.” (P08). Fittingly,
many participants struggled to provide the LLM with enough con-

text to create high quality results, mentioning the limited context

windows and numbers of tokens that LLMs can process, or request

limits in AI assistants. P06 summarizes all this well: “Code generated
by AI [might not] be safe because it does not know the entire code,
it just gives relation to my question of what I asked. I don’t feel it’s
completely safe. I do check back.” (P06).

Actual Security Issues through AI Assistants: Despite the
widespread security and quality concerns, participants rarely re-

ported facing security issues using AI assistants. Instead, experi-

ences were mixed. While a few were unsure, some participants did

not perceive any change in their projects’ security since adopting

AI assistants. Only a few mentioned security improvements, like

identifying a new attack vector in their software. A few others,

however, reported security shortcomings in the generated code:

“For example, it doesn’t hash the password, it doesn’t add salt to the
password unless you specifically tell it to do that. [. . .] Generally, it’s
not very secure. We will generally find mistakes in the majority of code
snippets that it creates.” — P08

Nonetheless, others did not experience security issues despite all

other quality shortcomings: “It definitely writes bad or suboptimal
code in some places, but I don’t frequently see glaringly obvious
security vulnerabilities being created by the AI.” (P17).

Security Concerns:Most participants expressed security con-

cerns when using AI assistants. Many doubted its ability for security

tasks, as one said: “I would never rely on ChatGPT for security.” (P26).
First, about half the participants found that AI assistants will

likely introduce security issues through generated code: “I think
the more code will be produced by the current existing AI tooling,
the more we’ll see security bugs in them, and we’ll probably see new
patterns of security bugs.” (P02).

Second, some participants were concerned about LLM poisoning

and facing models trained to create insecure suggestions. A few

outlined that they would not be able to recognize this: “What if it
is developed using a data set that is inherently vulnerable? [. . .] Those
challenges are there.” (P04). Similarly, a few were concerned about
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AI assistants acting as a malicious dependency: “Actually, anything
that’s produced also has that vulnerability.” (P08).

Third, some participants questioned AI assistants’ suitability for

security at all or partly: “ChatGPT is much more limited in cyber se-
curity, but it’s very good in code generation and programming.” (P24).
For example, participants found it performs worse than static ap-

plication security testing (SAST) tools in finding vulnerabilities;

P13 and P26 argued that current AI models, like GPT and Codex,

cannot handle more complex security tasks. A few participants

experienced that ChatGPT needs to be actively directed into a “se-
curity mindset” in their prompts and questioned why this is not a

default: “Honestly, I’m not so satisfied with the security level of the
code because ChatGPT doesn’t include it by default. If you don’t ask
it, it doesn’t include the security steps in the code.” (P27).

4.3.2 AI Assistants’ Ethics Safeguards on Security Tasks: Some par-

ticipants reported that the ethical safeguards built into AI assistants
(also called guardrails or constraints) rejected their prompts for secu-

rity tasks, e.g., finding vulnerabilities. However, several participants

explained that they had reframed their prompts to circumvent the

AI assistants’ safeguards and have it assist with a vulnerability:

“In ChatGPT, for example, if I’m asking how to do an SQL injection, it
will say ‘SQL injection is an unethical thing, sorry, I can’t help you with
that.’ If I’m asking in some [. . .] indirect way, it will explain to me all
the details.” — P07

Therefore, participants perceived it more like a circumventable

usability obstacle, but not an actual constraint. However, this might

not be enough to leverage AI assistants for more offensive security

tasks, even when circumventing ethics constraints. For example,

P25 explained that AI assistants can suggest possible attack vectors

but will not perform the attack for them:

“It gives you some tricks. [. . .][and] possible attack vectors, but it will
not make the attack instead of you. If you don’t [. . .] understand how
the basic attack works, just using one command that ChatGPT gives
you, will not make you a successful attacker or hacker.” — P25

4.3.3 Policy & Regulations on AI Usage. As large tech companies,

such as Apple or Google, have banned the use of AI assistants for

security and quality reasons, we asked participants about policies

on using AI in their work.

About half of the participants stated their company did not have

a policy regulating the use of AI assistants. Participants who work

in companies that recently started using AI assistants argued that

policies were not considered as they needed to test the boundaries

and use cases of AI assistants. One participant declines policies and

explicitly said: “No, absolutely no. No policy interference!” (P10). Self-
employed participants did not require a policy, since they work for

themselves. Some participants advocate for self-policing and argue

that a policy is not required when following common sense, e.g., not

sharing sensitive data. A few participants expressed that the need

for policies when using AI assistants is security-relevant, especially

when using it to generate code that, therefore, needs to be tested (see

Section 4.2.3). These participants desire a standardized verification

process to evaluate and verify the security of the generated code

before merging it to the main code base.

Besides policy absence, other participants reported having poli-

cies. A few even reported that their companies banned AI assistants

by policy, but mainly for privacy reasons, as outlined in Section 4.2.2.

One explained how their company developed a custom AI assistant

based on public LLM APIs, which serves as a proxy that filters

requests based on the company policy before sending the prompt

to the third-party LLM. Another participant explained that AI as-

sistants remain forbidden by default but can be used when clients

authorize their data to be shared with AI assistants.

Participants rarely reported shadow practices, while a few as-

sumed AI assistants usage anyway, even if forbidden. P16 justified

their use of ChatGPT, even though their company requires Bing

Enterprise because they perceived the former to perform better.

4.3.4 Responsibility for AI-Generated Code. For a fictive scenario,
we asked about responsibility when AI-generated code is used in

production, only to find it vulnerable and exploited later. Almost all

participants agreed the human who uses the AI assistant remains

responsible, while a few said their company is also responsible.

Participants mainly argued that an AI assistant is a tool and does

not replace the developers’ agency, but developers must check

suggestions before using them. P01 compared it to copying and

pasting code from SO, stating that it is the human’s responsibility

that the code works as intended. P08, however, argued that their

company would be responsible as it should have ensured a code

review process, specifically for AI-generated code. Only a few other

participants said they consider the AI assistant creators responsible.

4.3.5 Security Performance: Human vs. AI. We asked participants

who wrote the more secure code, comparing humans and AI. Over-

all, participants’ opinions differed. About half of them argued that

humans would create more secure software. On the contrary, some

expected AI to perform better. A few participants said that AI as-

sistants currently perform at the level of junior human developers

but expect AI to become better than humans. While P02 currently

expected neither to performwell, some participants perceived AI as-

sistants and humans to complement each other, therefore achieving

the best security when AI assists humans:

“I think that the most secure code would be a combination of the two. I
think that both I and the model alone would generate code with insecu-
rity. I think that the combination of both me and the model would write
the most secure code.” — P14

Key Findings: Security Concerns & Considerations (RQ2).
• When using AI assistants, participants consider security, indicated

through many security concerns, but only a few faced actual security

issues. The overall (security) mistrust in AI assistants is primarily due

to code quality concerns.

• Participants mainly assume humans to perform better security-wise

than AI assistants, and perceive humans to remain responsible, as AI

is just an assisting tool.

• AI assistant usage policies are rare and mainly motivated by privacy

concerns, but some participants desire policies to ensure secure usage.

4.4 Expected Future Impact of AI Assistants on
Security and Development Practices

Lastly, our participants shared their views on the future impact of

AI assistants on software development, the changes they expect

to software development, their influence on software security, and

their wishes for future usage of AI tools (RQ3).
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4.4.1 Future Impact on Security. Participants were undecided re-

garding the future impact of AI assistants on security. Many ex-

pected AI tools to help with security, as they believed AI tools

would be able to support developers with security during software

development. For example, they imagined AI could find common

vulnerabilities and take over static code analysis. Some stated, how-

ever, that the quality and accuracy of the tools would need to

improve for use in security tasks: “If we can make sure AI spits out
perfectly secure code, which it will be capable of doing along the line,
then AI will be improving the overall cybersecurity posture.” (P26).

In contrast, about half of the developers expected using AI as-

sistants to impact software security negatively. For example, some

noted that the quality of AI tools was not yet high enough to ensure

security, but they expected this to be the case in the future:

“For the first time, using AI tools for writing applications, we will have
more vulnerabilities, and we will need to fix them. However, with time,
the AI model will learn some details, and I think it will be fixed.” — P27

A few others suspected developers of blindly trusting the AI output

during software development and about software security, resulting

in vulnerabilities being introduced into the software: “If you’re just
blindly [. . .][using AI and check] the code in without proper testing
or without proper reviewing, I think there is a very high chance that
there can be a security flaw in that.” (P9).

Further, some had concerns that AI assistants could effectively

be used by potential attackers, with AI tools being able to find and

exploit common vulnerabilities, making it possible for attackers

with little technical knowledge to perform attacks:

“I think decades ago, script kids referred to kids who get access to some
dangerous piece of code. They do not necessarily know what the code
does, but when they run it, it’s very damaging. Nowadays, the kids just
need to express what they want to achieve, and then ChatGPT will write
some bad code for them.” — P12

4.4.2 Expected Changes to the Software Development Process. Over-
all, participants expected AI assistants to become more involved

in the software development process, taking over more mundane

tasks, thus shifting the developers’ responsibilities toward complex

tasks that AI assistants cannot solve.

Participants mentioned a variety of tasks for which they want

to use AI in the future. The majority expected to be able to use

AI on security-relevant tasks. This includes code generation, secu-

rity reviews, vulnerability detection, software testing, and malware

analysis. However, many participants agreed that the suggestion

quality needs to improve for such tasks. Some participants expect

this to happen in the future: “I think over the course of time, in the
next three, two, or four years, definitely AI will write better code than
developers. That is something more secure and better.” (P4). Partici-
pants expect AI assistance for other tasks, like maintaining code,

installing and updating libraries, or software design.

Some participants speculated that AI toolsmight improve through

highly task-specific training, e.g., tools specifically trained for soft-

ware security instead of models for general use. They expect these

tools would perform better and would trust them more:

“It will be really hard to trust and rely on the [general] models when
there are security properties required. However, I guess that if a model
was developed with a security-first principle, focused on security, the
story might be different [. . .]” — P2

Many participants expected significant shifts in software de-

velopers’ responsibilities, such as developers becoming prompt

engineers or becoming an AI supervisor who primarily evaluates

AI suggestions. About half of the participants did not expect AI

assistants to replace humans in software development. Instead, they

suspect AI assistants will speed up tedious and time-consuming

tasks, shifting software developers’ tasks with more time for high-

level tasks. Thus, the majority shared a generally positive outlook

on AI’s influence on its future integration into the SDLC: “I don’t
think it will ever replace a developer. [. . .] I think it’s more likely that
we, as a software engineering industry, would do less and less of those
mundane tasks and more of the interesting stuff.” (P16). However,
some were worried about their job, as AI might perform many

current software developer tasks if they further improve. This fear

was mostly caused by AI assistants’ ability to solve many tasks very

quickly compared to human developers.

4.4.3 Wishes. Participants hoped that the usability of AI assistants
would improve along with the quality of the generated output. For

example, some developers hoped AI tools would be better integrated

into IDEs. A few others wanted easier methods to prompt the AI,

e.g., voice commands or the ability to pass drawings and diagrams

to the AI to explain program structures easily. This was combined

with the wish for technical improvements of the AI systems, for

example, a larger context window:

“Generative AI will get more powerful and can process more context
and broader context to generate better codes, and maybe in the future,
a whole project, which will need very minor modifications from the
human user or developer, probably.” — P20

However, many participants mentioned that the output quality

needs to improve before AI assistants could be of greater help to

them, as they had issues with the quality and correctness of the AI

output in the past (Section 4.3.1). About half were confident that

the quality would improve in the future, with a few unsure how

fast these tools could improve: “I think they still have a long way to
go. There is a lot more training that they should undergo. They have
to improve.” (P10). A few participants mentioned observing a drop

in the quality of the AI output over time, claiming the AI needs to

be trained with higher-quality data.

As most participants had concerns regarding leaking sensitive

data and IP through third-party AI assistants (Section 4.2.2), some

desire and expect increased use of self-hosted and specialized AI

assistants within companies:

“The thing is, if you are having your local model, which is, again, coming
to the security and the privacy, that’s the only way that your data is
not accessed. [. . .][If] this model on your server, it’s not going outside
your network.” — P21

Key Findings: Expected Future Impact (RQ3).
• Participants expect their role to shift from writing code to more cre-

ative and complex tasks, leaving the mundane for AI assistants under

their supervision.

• Participants desire improvements in AI assistant quality, correctness,

and security abilities.

• Some participants envision AI assistants to improve in security tasks,

while others argue for a negative impact.
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5 Discussion
Below, we discuss our results by setting them in context and deriv-

ing recommendations on usage and future AI assistants.

5.1 (Mis)Trust in AI Assistants
While our participants largely maintain a critical mistrust towards

AI assistants, they widely use them in software development (e.g.,

to generate code) at the same time. Although this mistrust applies

to security (e.g., generating vulnerable code), participants reported

security issues rarely. They used other aspects, like functionality

and correctness of AI suggestions, as a proxy to assess AI assis-

tants’ security performance. That said, mistrusting AI assistant

security is likely due to overall quality issues that participants

widely experience. Currently, this skepticism leads participants to

use AI assistants with care and scrutinize AI suggestions. Changes

to these proxy indicators might affect developer behavior. For exam-

ple, future quality improvements might lead to blindly trusting AI

assistants and not checking code suggestions’ security before using

them. Further, getting more used to AI assistants might have similar

effects and could be expected for such a novel technology. How-

ever, this hypothesis needs to be investigated in future research.

The Reddit discourse analysis broadly aligns with the interview

findings, as Redditors and our participants use AI assistants for

various software development tasks. We found similar mistrust in

AI assistants, as interviewees and Redditors expressed the need to

scrutinize AI suggestions.

5.2 Comparison with Related Work
5.2.1 Mismatch with Prior Experimental Results. As this study con-

tributes qualitative insights that complement prior experiments on

the security impact of AI assistants, a comparison finds a major

mismatch: While our participants reported to critically scrutinize

AI suggestions (Section 4.2.3) due to general mistrust and did not

perceive negative security impact from AI usage, a negative secu-

rity impact is evident in practice [49, 59, 61, 64, 68]. This mismatch

reveals a skewed self-perception, so that software professionals

overestimate their capabilities in scrutinizing AI suggestion for

security. Nonetheless, we conclude that software professionals are

aware of potential security issues due to AI assistant usage and

try to “stay awake” [59], but seem to lack methods and support to

effectively validate AI suggestions.

5.2.2 Security Capabilities of AI Assistants. Our participants feel
that AI capabilities are still limited and unreliable, while being

a supportive tool at the same time. However, they generally be-

lieve LLMs will become more helpful in assisting with security

in the future (Section 4.4). Currently, research found mixed capa-

bilities in AI assistants, ranging from poor quality and insecure

suggestions [49, 59, 61, 64] to autonomously outperforming CTF

players [33, 53, 60, 66, 67, 70]. As our participants did not perceive

such immense benefits, this supports that studies might overesti-

mate AI security performance [22, 73] when used in practice. Based

on our interviews, we hypothesize that challenges when using AI

assistants, e.g., providing enough context, engineering prompts, or

ethics safeguards, currently prevent leveraging the full potential

that might be achievable in theory and under ideal lab conditions.

5.3 AI Assistants as a (Novel) Source of Advice
We found our assumption confirmed that AI assistants are a new

advice source. Participants reported to have primarily replaced

classical online advice sources, like Google and SO, by using AI

assistants (Section 4.2.1). We see similar usage patterns, such as

copying, pasting, and adapting code (Section 4.2.3)—that are known

to cause security issues, e.g., when copying from SO [27]. Compa-

rably, the research community also found software professionals to

achieve worse security when using AI assistants compared to not

using them [49, 59, 61, 64]. While recent research found ChatGPT

not to entirely replace SO, 35% preferred the former due to its lan-

guage characteristics and comprehensiveness—even with a large

portion of incorrect answers [42].

Considering AI assistants a (partial) replacement for other on-

line advice sources, it remains an open question how AI assistants

impact online knowledge communities in which they have been

trained (partly). Recently, Burtch et al. found AI assistants degrade

online communities and reduce the number of users on SO [10].

This could cause a “vicious cycle” of feedback when it drains the

online communities on which it is trained. Following that argu-

ment and given the often poor quality and insecure suggestions on

SO, creators of AI assistants need to be aware of this problem and

prevent reinforcing insecure suggestions [21].

5.4 Recommendations
Below, we give recommendations for AI assistant users and creators:

5.4.1 Critically Scrutinizing AI Suggestions. We advocate, similar

to other work that demonstrated the security shortcomings of AI

code assistants [59], to critically validate all AI suggestions. De-

spite the found mismatch that questions its feasibility for software

professionals (Section 5.2.1), we argue that awareness of AI unreli-

ability and potential security issues is important nonetheless—and

required for critical scrutiny. While our participants often already

showed this awareness, we underline the need to educate software

professionals and companies about potential security issues arising

from AI usage, e.g., package hallucinations [14, 46].

How to scrutinize AI suggestions (and generally ensuring code

security) remains an open question. As a rule of thumb, we recom-

mend treating AI-generated code like human code and applying

the same quality assurance measures, e.g., code reviews, software

testing, static analysis, or pentesting. Many software professionals

and companies already had such structured processes (cf. Figure 2).

Given potential security decreases, we argue that AI assistant

usage should be considered depending on the security guarantees

needed in a software project on a case-by-case basis. Currently, our

participants are concerned that AI assistants do not outperform hu-

mans with expert security knowledge, raising the question of why

AI is used for security-critical tasks. Given that participants (need

to) check the AI suggestions, humans with sufficient knowledge

and skills are still required to do these checks anyway.

5.4.2 Improving Model Quality and Security. Given the current

widespread usage of AI assistants, which can be expected to become

even more ubiquitous, reducing security issues at the model level

is likely to have the highest impact. Our participant’s quality and

security concerns were reflected in the demand for improved future



Using AI Assistants in Software Development: AQualitative Study on Security Practices and Concerns CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

models (Section 4.4.3). As our participants, we anticipate further AI

assistant improvements. Along with the general improvements in

AI assistant quality and performance, AI creators should also ensure

suggestions are reliable and secure to avoid risk to downstream

users of software built with AI suggestions.

We argue that models with security capabilities are needed if AI

assistants are used in software engineering. For example, coding

models must be constrained to generate secure code suggestions (at

least at a high rate). As this can largely depend on the LLMs’ training

data, we advocate rethinking what data is used for training. While

current models are trained on large corpora of online content, e.g.,

fromGitHub or SO, it is no surprise that the resulting AI suggestions

might be insecure given many insecure code snippets online [27–

29]. Using datasets with better quality and security could also make

AI suggestions more secure. For existing models, security hardening

techniques should be considered [38].

We hypothesize that using task-specific models, e.g., for vul-

nerability detection, threat modelling, or secure code generation,

instead of general-purpose models might result in better quality and

security capabilities. For example, HackerOne recently launched

Hai beta, an AI assistant specifically tailored to vulnerability intel-

ligence tasks, e.g., to assist with vulnerability remediation [35].

5.4.3 Leveraging Prompt Engineering. To improve and get the best

possible AI assistant suggestions, we recommend software pro-

fessionals to leverage prompt engineering. Also, the AI assistant

creators suggest prompt engineering, e.g., OpenAI [58], indicating

this is necessary to circumvent low-quality suggestions like our

participants reported. When not satisfied with the first suggestion,

software professionals should try to iteratively refine their prompts,

e.g., starting with simple queries, then providing more context, be-

ing more specific, or splitting a problem in smaller sub-problems.

Many participants already apply known prompt engineering tech-

niques [26] by adapting their prompts to obtain the desired AI

suggestions (Section 4.3.1). We recommend learning about and

exploring prompt engineering practice guides [26, 58, 65]. Still,

prompt engineering remains a significant usability obstacle, limit-

ing AI assistant usefulness [48].

5.4.4 Shifting from Compliance-Driven to Security-Driven Policies.
Interestingly, the companies participants work for seem less con-

cerned about the security of AI-suggested code. Instead, they view

data usage and privacy aspects (Section 4.3.3) as the main motiva-

tion behind AI assistant usage policies—although Google did ban

AI assistants due to security concerns [20]. Given many partici-

pants shared AI assistant security concerns, one explanation for

compliance-driven policies is that management or legal teams cre-

ate them, but not software professionals, as our participants were

rarely involved. Another explanation is that AI suggestions are

evaluated like human code (Section 4.2.3), not needing a dedicated

policy. Nonetheless, we think data and privacy leakage concerns

are important aspects and need to be considered by companies; re-

cently, Niu et al. uncovered that about 8% of prompts to the GitHub

Copilot models result in privacy leaks [55]. Overall, we acknowl-

edge that using AI assistants is a trade-off between security, privacy,

cost, efficiency, and liability. We call companies to remember to

consider security in this trade-off.

5.4.5 Prioritizing Usage of Privacy-Friendly AI Assistants. A signifi-

cant participant concern was leaking data and sensitive informa-

tion when using AI assistants (Section 4.2.2), which also results

in policies regulating usage (Section 4.3.3). Other researchers also

found these privacy concerns among general users of AI assistants,

and we can confirm trade-offs between privacy and utility [75]

for software professionals. Consequently, participants desire self-

hosted AI assistants, i.e., not involving a third party, or private

ones, i.e., hosted by a third party but with privacy guarantees (e.g.,

no training on prompts). The latter might be interesting if the

hardware is unavailable, e.g., to host models like Llama [52]. We

recommend software professionals and companies to consider these

more privacy-friendly variants of AI assistants. The creators of AI

assistants should offer their models either for self-hosting or in a

private subscription. The industry recognizes this need already;

for example, GitHub recently launched Copilot Enterprise [16, 24].
When also fine-tuning such models (e.g., on a company’s code base),

this might improve quality and security of AI suggestions.

5.4.6 Balancing Ethical Concerns and Using AI Assistants for Secu-
rity. As participants reported, one limitation to using AI assistants

for security tasks are the implemented ethics safeguards. AI assis-

tants might refuse prompts they deem unethical, e.g., more offensive

security tasks like identifying a vulnerability or creating an exploit

(Section 4.3.2). While these ethical considerations are important,

they create a dilemma, as vulnerabilities must be found and fixed

to improve security. For ethical usage, e.g., security evaluations of

one’s software, this can limit AI assistants’ usefulness—for valid use

cases that would be done by human security experts otherwise. Fur-

ther, participants reported circumventing safeguards with prompt

engineering. While we advocate the creation of AI assistants for

specific security tasks, we believe it is necessary to discuss the

ethics first and to implement the respective ethical constraints that

cannot be easily circumvented. This is also necessary as specific

security AI assistants like Hai [35] emerge.

5.5 Outlook & Future Work
5.5.1 General-Purpose & Code AI Assistants. Table 1 confirms the

wide usage of ChatGPT and other general-purpose AI assistants

among software professionals [69], even more than coding assis-

tants like GitHub Copilot. However, we perceived a strong focus on

AI code assistants like Copilot in security research [49, 59, 61, 64].

Future research should close this gap and consider both coding-

related and general-purpose AI assistants (which are also used for

coding tasks), e.g., comparing the security impact of using both

kinds. Similarly, the creators of general-purpose models should also

consider the security impact when their models are capable of and

used for software development tasks.

5.5.2 AI Assistants vs. Other Advice Sources. Considering AI assis-

tants as novel advice sources (Section 5.3), the question of whether

software professionals deal differently with AI assistants’ sugges-

tions and other advice sources arises. Hence, we advocate exper-

iments to compare the security impact of AI assistants to other

advice sources (e.g., Google, SO), similar to earlier related work [1].
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6 Conclusion
We investigated software professionals’ usage of AI assistants in

software development, focusing on security and their security con-

siderations in 27 interviews, complemented by the analysis of Reddit

posts. Besides being used often by almost all participants, we found

that both coding AI assistants, like Copilot, and general-purpose

AI assistants, like ChatGPT, are widely used for security-critical

software development tasks (e.g., code generation, threat model-

ing, code reviews, and vulnerability detection). Despite ubiquitous

usage, we found that our participants mistrust and check AI sugges-

tions. While security is a primary concern, only a few participants

reported negative experiences with AI assistants in the past. As our

results qualitatively complement prior experiments [49, 59, 61, 64],

a comparison reveals a mismatch between our participants’ re-

ported scrutiny and actual code security when using AI assistance.

This indicates that software professionals overestimate how well

they can scrutinize AI suggestions. A contributing factor is likely

that participants reasoned about AI assistant security capabilities

based on proxies such as functionality. Overall, we conclude that

AI assistants change software development by being a novel source

of security and security-relevant advice for software professionals.
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